PH2 Mark Scheme – January 2010

Que	stion		Marking details I. 2 arrows drawn upwards at right angles to wave fronts	Marks Available 1
1	(a)	(i)		
			II. The waves travel more slowly in the shallow water (1) as the propagation direction bends towards the normal (or equiv) (1)	2
		(ii)	I. Wavelength = $8 \pm 1 \text{ mm}$	1
			II. $f = \frac{0.33 \text{ m s}^{-1}}{0.008 \text{ m}} (1) \text{ [or by impl.] (e.c.f. on } \lambda) = 40 \text{ or } 41 \text{ Hz } (1)$	
			[-1 on wrong power of 10]	2
			III. Attempt clearly based upon unchanged $f \underline{\text{or}} \frac{v_s}{v_d} = \frac{\lambda_s}{\lambda_d}$ (1) [or by	
			impl.] $v = 0.21 \ [\pm 0.02 \ \text{m s}^{-1}] \ (\text{e.c.f. on } f) \ (1)$	2
	<i>a</i>)		2	
	<i>(b)</i>	(i)	Total internal reflection	1
		(ii)	1.58 sin 72° = n_{clad} sin 90° [or by impl.] (1) $n_{\text{clad}} = 1.58 \sin 72^{\circ} \text{ or } \sin 90^{\circ} = 1 \text{ or by impl.}$ (1)	
			$n_{\text{clad}} = 1.50 \text{sm}/2 \underline{\text{or}} \text{sm}/0 = 1 \underline{\text{or}} \text{by impl.}$ (1)	3
			[Angles transposed, leading to $n = 1.64$, or other transposition errors $\rightarrow 1$ mark only]	J
		(iii)	Light takes longer by zigzag paths [accept 'multimode dispersion']	
			[Accept – different paths give different times] (1) A piece of data will be 'smeared out' over time on arrival or may	
			overlap other pieces of data (1) [Accept 'pulse broadening' only if	
			first mark gained by reference to zigzag paths, i.e. not 'multimode dispersion' + 'pulse broadening' only (2)]	2
				[14]

Question			Marking details	Marks Available
2.	(a)	(i)	 At [centres of] bright fringes: Path lengths from slits differ by 0, λ, 2λ [if sources in phase] Waves arrive in phase or sketch graphs of in-phase waves Waves interfere constructively or displacements add to make larger displacement. Assume slits act as coherent sources or waves diffract at slits 	4
		(ii)	Separation of centres of fringes = $\frac{4.0}{3}$ mm / 1.3 mm / 1.33 mm [or equiv, or by impl.] (1) Correct data substitution into $\lambda = \frac{ay}{D}$ ignoring factors of 10 [e.c.f.] (1)	
			$\lambda = 6.3 \times 10^{-7} \mathrm{m} (1)$	3
	(b)	(i) (ii)	$2[.00] \times 10^{-6} \text{ m}$ Attempt to use $n\lambda = d \sin \theta$ with $d = 2.00 \times 10^{-6} \text{ m}$ [e.c.f.] (1)	1
			$\theta = 72^{\circ} (1)$ n = 3 (1) $\lambda = 6.3 \times 10^{-7} \text{ m } (1) \text{ [e.c.f. only on } d \text{ from } (b)(i)]$	4
	(c)		More uncertainty with Young's method (1) because either fringe separation is small and difficult to measure [whereas grating beams are well spaced] or fringes are not sharp compared to the beams (1) [accept: d can be measured more accurately for grating [because]	
			there are more slits]	2
				[14]

Question			Marking details	Marks Available	
3	(a)	(i)	in phase (1) in antiphase [accept completely or 180° or π out of phase] (1)	2	
		(ii)	Use stroboscope (1) and adjust flash frequency for slow motion / expect to see A moving up as C moves down etc. (1) [Or: Use a video camera and replay in slow motion / expect to see A moving up as C moves down etc.]	2	
	(b)	(i)	Either: Amplitude constant [or falls off] for progressive wave (1) as we go through the medium; goes up and down [regularly] form stationary wave (1) Or: Phase changes steadily with distance for progressive waves (1); reverses at nodes [otherwise constant] form stationary waves (1)		
			["Stationary waves have nodes, progressive waves don't" \rightarrow 1]	2	
		(ii)	Reflections give rise to waves propagating in both directions (1); interference between these [progressive] waves gives stationary wave (1)	2	
	(c)	(i)	0.6 m	1	
		(ii)	30 m s ⁻¹ ((unit))	1	
				[10]	
4.	(a)	(i)	Photon energy	1	
		(ii)	$E_{\rm kmax}$ is the maximum KE of emitted electron (1) ϕ is the minimum energy for an electron to escape (1). What is left over of the photon's energy after the escape is its kinetic		
			energy. (1)	3	
	(b)	(i)	Graph: Points [±0.2 divisions] (1); line [not necessarily extrapolated] (1)	2	
		(ii)	I. $3.8 \pm 0.2 \times 10^{-19} \text{ J}$ II. $\frac{(4.04 - 0.79) \times 10^{-19} \text{ J}}{(11.8 - 6.9) \times 10^{14} \text{ Hz}} \left[\text{ or } \frac{\Delta y}{\Delta x} \text{ from graph} \right] (1)$	1	
			= 6.6 [\pm 0.4] \times 10 ⁻³⁴ Js (1) NB. Must be value from working.	2	
		(iii)	Graph line drawn with same slope (1) and to left of / above that for sodium (1)	2	
				[11]	

Question			Marking details	Marks Available
5	(a)		$\Delta E = \frac{hc}{\lambda} [\text{or } \Delta E = hf \text{ and } c = f\lambda] [\text{or by impl.}] (1)$	
			$\lambda = 6.95 \times 10^{-7} \mathrm{m} (1)$	2
	(b)	(i) (ii)	Absorption [accept excitation] Increases atom's [accept electron's]energy [accept 'excites atom' unless excitation credited in part (i)](1)	1 1
	(c)	(i) (ii)	Stimulated emission Any 2 × 1 of: frequency [or wavelength or energy] / phase / propagation direction / polarisation	1 2
	(d)	(i) (ii)	More electrons in the higher (middle) level than the lower [or ground] Arrow shown on Process B from lowest level to top level.	1 1
		(iii)	Shorter time at top level (1) to maintain population of middle level (1)	2 [11]
6	(a)		Charge = $\frac{2}{3}$ [e] + $-\frac{1}{3}$ [e] + $-\frac{1}{3}$ [e] = 0 [or equiv.] [or No other combination of 3 u and d quarks gives zero charge]	1
	(b)	(i)	π^{-} : $-\frac{1}{3}[e] + -\frac{2}{3}[e]$ [or equiv.] = $-e$ [or -1] (1) Δ^{-} : $3 \times -\frac{1}{3}[e] = -e$ [or -1] (1)	2
		(ii)	A meson is a quark-antiquark (1) pairing. A baryon is a triplet of quarks [accept antiquarks] (1)	2
	(c)	(i)	I. $0 \rightarrow 1 + (-1)$ or equiv. II. $3 \rightarrow 2 + 1$ or equiv.	2
		(ii)	u and d individually conserved $$ or lifetime too short [accept no ν_e involvement]	1
	(d)	(i)	uuu	1
		(ii)	π must be ud [because charge must be conserved or because u and d numbers are individually conserved].	1
				[9]

Ques	Question		Marking details	Marks Available
7	(a)		$\lambda_{\text{max}} = 950 \ [\pm 50] \ \text{nm} \ [\text{or by impl.}] \ (1)$	
			$T = \frac{2.90 \times 10^{-3} \text{ m K}}{950 \times 10^{-9} \text{ m}} (1) \text{ [ecf on } \lambda_{\text{max}}]$ = 3050 K (1)	3
	(b)	(i)	Spectral intensity [far] greater at 700 nm [than at 400 nm].	1
		(ii)	Infrared	1
		(iii)	I. peak / around 900 – 950 nm	1
			II. $\lambda_{\text{max}} = 550 \text{ nm} [\text{accept } 500 - 600 \text{ nm}](1)$ T = 5300 K (1) [e.c.f. from λ_{max} but only if λ_{max} between 400 and 700 nm]	2
	(c)		knowledge of meaning of symbols in $P = \sigma A T^4$ demonstrated (1) $A = 4\pi \times (1.01 \times 10^8 \text{ m})^2 [=1.28 \times 10^{17} \text{ m}^2] (1)$ $P = 6.3 \times 10^{23} \text{ W ((unit))}(1) [e.c.f. on T from (a)]$	
			[1 mark lost if answer adrift by a factor of π or 2^n , or if the answer to $(b)(iii)$ II used instead of 3000 K]	3
				[11]