PH2 Mark Scheme - January 2010

Question			Marking details	Marks Available
2.	(a)	(i)	At [centres of] bright fringes: - Path lengths from slits differ by $0, \lambda$, $2 \lambda .$. [if sources in phase] - Waves arrive in phase or sketch graphs of in-phase waves - Waves interfere constructively or displacements add to make larger displacement. - Assume slits act as coherent sources or waves diffract at slits	4
		(ii)	Separation of centres of fringes $=\frac{4.0}{3} \mathrm{~mm} / 1.3 \mathrm{~mm} / 1.33 \mathrm{~mm}$ [or equiv, or by impl.] (1) Correct data substitution into $\lambda=\frac{a y}{D}$ ignoring factors of 10 [e.c.f.] (1) $\lambda=6.3 \times 10^{-7} \mathrm{~m}$ (1)	3
	(b)	(i)	$2[.00] \times 10^{-6} \mathrm{~m}$	1
			Attempt to use $n \lambda=d \sin \theta$ with $d=2.00 \times 10^{-6} \mathrm{~m}$ [e.c.f.] (1) $\begin{aligned} & \theta=72^{\circ}(1) \\ & n=3(1) \\ & \lambda=6.3 \times 10^{-7} \mathrm{~m}(1) \text { [e.c.f. only on } d \text { from (b)(i)] } \end{aligned}$	4
	(c)		More uncertainty with Young's method (1).... because..... either fringe separation is small and difficult to measure [whereas grating beams are well spaced] or fringes are not sharp compared to the beams (1) [accept: d can be measured more accurately for grating [because there are more slits]	2
				[14]

Question			Marking details	Marks Available
5	(a)		$\begin{aligned} & \Delta E=\frac{h c}{\lambda}[\text { or } \Delta E=h f \text { and } c=f \lambda] \text { [or by impl.] (1) } \\ & \lambda=6.95 \times 10^{-7} \mathrm{~m} \text { (1) } \end{aligned}$	2
	(b)	$\begin{aligned} & \text { (i) } \\ & \text { (ii) } \end{aligned}$	Absorption [accept excitation] Increases atom's [accept electron's]energy [accept 'excites atom' unless excitation credited in part (i)](1)	1
	(c)	$\begin{array}{r} \text { (i) } \\ \text { (ii) } \end{array}$	Stimulated emission Any 2×1 of: frequency [or wavelength or energy] / phase / propagation direction / polarisation	1
	(d)	(i) (ii)	More electrons in the higher (middle) level than the lower [or ground]	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
		(iii)	Shorter time at top level (1) to maintain population of middle level (1)...	2
				[11]
6	(a)	(i)	Charge $=\frac{2}{3}[\mathrm{e}]+-\frac{1}{3}[\mathrm{e}]+-\frac{1}{3}[\mathrm{e}]=0$ [or equiv.] [or No other combination of 3 u and d quarks gives zero charge] $\begin{aligned} & \pi^{-}:-\frac{1}{3}[\mathrm{e}]+-\frac{2}{3}[\mathrm{e}][\text { or equiv. }]=-\mathrm{e}[\text { or }-1](1) \\ & \Delta^{-}: 3 \times-\frac{1}{3}[\mathrm{e}]=-\mathrm{e}[\text { or }-1](1) \end{aligned}$ A meson is a quark-antiquark (1) pairing. A baryon is a triplet of quarks [accept antiquarks] (1) I. $\quad 0 \rightarrow 1+(-1)$ or equiv. II. $3 \rightarrow 2+1$ or equiv. u and d individually conserved or lifetime too short [accept no v_{e} involvement] uuu π must be $u \bar{d}$ [because charge must be conserved or because u and d numbers are individually conserved].	1
	(b)			2
		(ii)		2
	(c)	(i) (ii)		2
				1
	(d)	(i) (ii)		1
				1
				[9]

Question			Marking details	Marks Available
7	(a)		$\begin{aligned} & \lambda_{\max }=950[\pm 50] \mathrm{nm} \text { [or by impl.] (1) } \\ & T=\frac{2.90 \times 10^{-3} \mathrm{~m} \mathrm{~K}}{950 \times 10^{-9} \mathrm{~m}}(1)\left[\text { ecf on } \lambda_{\max }\right] \\ &=3050 \mathrm{~K}(1) \end{aligned}$	3
	(b)	(i)	Spectral intensity [far] greater at 700 nm [than at 400 nm].	1
		(ii)	Infrared	1
		(iii)	I. peak / around $900-950 \mathrm{~nm}$ II. $\lambda_{\text {max }}=550 \mathrm{~nm}$ [accept $\left.500-600 \mathrm{~nm}\right](1)$ $T=5300 \mathrm{~K}(1)$ [e.c.f. from $\lambda_{\max }$ but only if $\lambda_{\max }$ between 400 and 700 nm]	1 2
	(c)		knowledge of meaning of symbols in $P=\sigma A T^{4}$ demonstrated (1) $A=4 \pi \times\left(1.01 \times 10^{8} \mathrm{~m}\right)^{2}\left[=1.28 \times 10^{17} \mathrm{~m}^{2}\right] \text { (1) }$ $P=6.3 \times 10^{23} \mathrm{~W}((\text { unit }))(1)[\text { e.c.f. on } T \text { from }(a)]$ [1 mark lost if answer adrift by a factor of π or 2^{n}, or if the answer to (b)(iii)II used instead of 3000 K]	3
				[11]

